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Real-time Scheduling Algorithms

 In a real-time environment, multiple 
processes with computational deadlines 
compete for processor time.

 "Hard real-time" means it is never okay to miss 
deadlines

 We consider the problem of scheduling a 
collection of periodic processes running 
on a multiprocessor system.
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Example

 2 processors; 3 tasks, each with 2 units of 
work required every 3 time units
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Periodic Tasks

 A periodic task is one that requires a 
certain amount of work be completed 
within each period.

 If a task has period p and workload c, then its 
utilization u = c / p is the fraction of each period 
that the task must be running.
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Our Goal (version 1)

 Given a set of N tasks on M processors, 
find a feasible scheduling of tasks so that 
all deadlines are met (if such a scheduling 
exists)

 We say that a scheduling algorithm is "optimal" 
if it find some successful scheduling for any task 
set for which some correct scheduling exists
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Assumptions
 All processors are equivalent

 Tasks may migrate between processors

 Tasks are independent, and may not run simultaneously on 
two processors

 No overhead for context switches or migrations
  This model is theoretical, not realistic
  In practice, these overheads lead to the use of 

suboptimal scheduling algorithms
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Theorem 1

 Any collection of tasks whose total 
(summed) utilization does not exceed 
M and whose individual utilizations do not 
exceed 1 has a feasible scheduling.

 Proof: Smaller work intervals can 
arbitrarily approximate a task's fluid rate 
curve
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Our Goal (version 2)

 Given M processors and a set of N tasks 
with total utilization summing to M, find a 
feasible scheduling of tasks which 
minimizes the number of context switches 
and migrations

 This goal is ironic, since we started by 
assuming that these operations are free
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Greedy Scheduling Algorithms

 A Greedy Scheduling Algorithm will, at 
various times, choose the M "best" jobs to 
run.  We need to specify:

 What does "best" mean?  Earliest deadline?  
Most work remaining?

 How often do all N jobs get compared to find 
the M best?
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Examples of Greedy Algorithms

 Earliest Deadline First (EDF)
 Schedule the M tasks with the earliest deadlines

 Least Laxity First (LLF)
 Laxity is a task's remaining possible idle time 

before it must be scheduled in order to finish its 
workload by its next deadline
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Why Greedy Algorithms Fail
On Multiprocessors
 Example:
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Why Greedy Algorithms Fail
On Multiprocessors
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Why Greedy Algorithms Fail
On Multiprocessors
 By any reasonable criteria, Tasks 1 and 2 

are scheduled first
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Why Greedy Algorithms Fail
On Multiprocessors
 By any reasonable criteria, Tasks 1 and 2 

are scheduled first

 Even at time t = 8, Tasks 1 and 2 are the 
obvious greedy choices

 However, if Task 3 is not turned on at time  
t = 8, one processor will sit idle between

   t = 9 and t = 10.
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Why Greedy Algorithms Fail
On Multiprocessors
 Before t = 40, the two processors can do 

80 units of work, and there are
    2 x (9 x 4)  +  8  =  80 units of work to do.  

If there is any idle time, not all deadlines 
can be met.

 Greedy algorithms fail because they can't 
see the "big picture."
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Why Greedy Algorithms Fail
On Multiprocessors
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Proportioned Algorithms
Succeed On Multiprocessors
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Proportional Fairness

 Insight:  Scheduling tasks is much easier 
when they all have the same deadline

 Application:  Give all task deadlines to all 
jobs, and within each such time window, 
assign each job work proportional to its 
utilization
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...isn't new...

 Previous proportional fairness algorithms:
 pfair (1994) - Baruah, Cohen, Plaxton, Varvel
 LLREF (2006) - Cho, Ravindran, Jensen
 EKG (2006) - Andersson, Tovar

 ... but they were all using proportional 
fairness without understanding its 
simplicity
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Theorem 2: "3 Rules"
 Given a collection of tasks with total 

utilization M, if all tasks are subdivided by 
assigning all deadlines to all tasks, then a 
scheduling algorithm within a single time 
window will succeed if and only if:

 It always runs any job with zero laxity
 It never runs any job which is completed
 M distinct jobs are always running
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Theorem 2: Proof
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Theorem 2: Implications

 Once we've subdivided all jobs into "time 
windows", with all system deadlines as 
boundaries, correct scheduling goes from 
being incredibly complicated to nearly 
trivial.

  What is the simplest possible algorithm?



25

Stack-and-Slice (SNS)

 All time windows are, up to linear scaling, 
equivalent, so normalize time window 
length to 1

 All jobs now have work equal to their 
utilization, and workloads add up to (no 
more than) M
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Stack-and-Slice (SNS)

 Example: 3 processors, 7 tasks
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Stack-and-Slice (SNS)
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SNS Performance

 N−1 context switches and M−1 migrations 
per time window

 This is about 1/3 as many as the LLREF 
algorithm, but somewhat more than EKG.  
However, the computational overhead is 
minimal compared to both.
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Summary
 Multiprocessor scheduling suddenly 

becomes very easy when all deadlines are 
shared with all jobs.

 This ease is demonstrated by Stack-and-
Slice, the simplest known optimal 
scheduling algorithm for this problem.
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What's Next?
 The minimal restrictions imposed by the   

"3 Rules" theorem leave lots of room to 
develop more complicated algorithms to 
further reduce context switches and 
migrations

 How can we extend these ideas to variants 
of this problem?

 Can we reduce the number of operations 
enough to make a real implementation of 
such a scheduler competitive?
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Thanks for Listening
 Questions?


